Timing-Abstract Circuit Design in
Transaction-Level Verilog

Steve Hoover
Founder, Redwood EDA

steve.hoover@redwoodeda.com

ICCD Now. 8, 2017

e Motivation
o The complexity crisis
o How we manage complexity today
o What’s not working

e Timing-Abstract Design in TL-Verilog
e Results

Verilog

Verilog was born of a different era...

Year | Processor | Clock Transistors | HDL

1985 | 1386 33MHz | 275K Verilog
(to verify)
2017 | AMD Epyc | 3.0GHz | 19.2B Verilog

(~100x) | (>70,000x)

We can’t continue designing this way!

IDE

Emacs/
Vi

XEmacs/
Vim

SoC Methodology

Manage complexity through modularity and reuse of IP
building blocks.

- IP utilized in different contexts, with different constraints for:
- darea
- power
- performance
- test/debug infrastructure
- clock frequency)
- RTL expresses an implementation,

with particular constraints

RTL is not good for IP!

P—0.2mm
=7.8 mm

CC BY-SA 3.0 - Cmglee

High-Level Synthesis

Design algorithm-level and let tools generate RTL, under
given physical constraints.

‘ System-C

Abstraction RTL

- Fantastic for some designs.
- For others, SystemC becomes RTL.

Many designs require RTL details!

We need to be able to model cycle-level interactions in a
way that is easier to manage.

A Simple Pipeline

e Let’s compute Pythagoras's Theorem in hardware.
e We distribute the calculation over three cycles.

flip-flop

/—lb L= B C
>t A sqrt |—

d b —»| A2

c = sgrt(a”™2 + b"2)

A Simple Pipeline - Timing-Abstract

N2

N2

fo

Timing-abstract:

|calc

] :B—[A_]— sqrt
—ia]
I

a

N2

b

N2

Yo

Stage:

1

Flip-flops and
staged signals are
implied from
context.

A Simple Pipeline - TL-Verilog

TL-Verilog

| |
1 t Q1

ha) | $aa sq[31:0] = $aa * Saa;
I I $dc $bb_sq[31:0] = $bb * $bb;
| | sqrt > @2

b ND | $cc_sq[31:0] = $aa _sq + $bb_sq;

. L @3

Stage: 1 : 2 I 3 $cc[31:0] = sqrt(Scc_sq);

SystemVerilog vs. TL-Verilog

| I SyStem // Calc Pipeline
i Verilog | logic [31:0] a C1;
logic [31:0] b _C1;
| sqrt > logic [31:0] a_sq C1,
a sq C2;
I logic [31:0] b_sq C1,
I I b sq C2;
logic [31:0] c_sq C2,
c_sq _C3;
logic [31:0] c_C3;
always ff @ (posedge clk) a sq C2 <= a_sq Cl;
always ff @ (posedge clk) b sq C2 <= b _sq Cl;
always ff @ (posedge clk) c_sq C3 <= c_sq C2;
Q1 // Stage 1

$aa sq[31:0] $aa * $aa; ass%gn a_sq Cl

$bb sq[31:0] = $bb * $bb; assign b_sq_Cl
@2 B // Stage 2

$cc sq[31:0] $aa sq + $bb sq; assign c_sq_C2
@3 B . - // Stage 3
assign c¢_C3 = sqrt(c_sq C3);

TL-Verilog

a Cl *acCl;
b Cl1 * b C1;

a sq C2 + b sq C2;

$cc[31:0] = sqrt(Scc_sq);

10

Retiming -- Easy and Safe

@1

@2

@3

$aa sq[31:
$bb_sq[31:

$cc_sq[31:

$cc[31:0]

$Saa * Saa;
Sbb * S$bb;

$aa _sq + $bb_sqg;

sqgrt ($cc_sq) ;

@o

@1

@2

@4

A\

$aa_sq[31:
$bb_sq[31:

$cc_sq[31:

$cc[31:0]

Saa * $Saa;
$bb * $bb;
$aa_sq + $bb_sq;

sqgrt ($cc_sq) ;

E Staging is a physical attribute. No impact to behavior.

|calc
$a
sqrt e
$
3 4
|calc
$a
sqrt
$
3 4

Retiming in SystemVerilog

// Calc Pipeline
logic [31:0] a C1;
logic [31:0] b C1;
logic [31:0] a_sq CO,
a sq C1,
a sq C2;
logic [31:0] b_sq C1,
b sq C2; |
logic [31:0] c sgq C2, ougo
caqca, Vvery BUG—PR
c_sq C4;
logic [31:0] c_C3;
always ff @ (posedge clk) a sq C2 <= a_sq Cl;
always ff @ (posedge clk) b sq C2 <= b sq Cl;
always ff @ (posedge clk) c sq C3 <= c sq C2;
always ff @ (posedge clk) c _sq C4 <= c_sq C3;
// Stage 1
assign a sq Cl = a Cl * a Cl;
assign b sq C1 = b C1 * b C1;
// Stage 2
assign ¢ _ sq C2 = a_sq C2 + b sq C2;
// Stage 3
assign c¢ C3 = sqrt(c sq C3); 12

Operand Mux

| : $rengata : :
linst I 1 $rslt I |
| I, | |
$imm_idata " | |
| . "N: o
| |] |
] | |]
2|mem : 3 $mem 'data - > .
I i i i i i
(’ Il 41 5161 71 81 9)
@3
$op_a[63:0] =
(Sop_a src == REG) ? >>2$reg data :
(Sop_a src == BYP) ? >>1Srslt
(Sop_a src == IMM) ? $imm data
(Sop_a_src == MEM) ? /top >>5%mem data :
64'b0;

13

Operand Mux Retimed

$reg_data
linst : :
| |
$imm_|data |
I _l;'
|
| |
2 ' 3 5 '
|mem
L} | | | | | | | |
(’I4I5I6I7I8|9)
$op_a[63:0] =
(Sop_a src == REG) ? >>2$reg data :
(Sop_a src == BYP) ? >>1Srslt
(Sop_a src == IMM) ? $imm data
(Sop_a_src == MEM) ? /top >>5%mem data :
64'b0;

14

Code Size Results from Industry Examples

Characters of Code (excl. comments & spaces)

30 000.00

""""" B Crig 5V
B TL-veriog
Gen SV
22 500.00
15,000.00
7.500.00
0.00

3.2GHz ASIC Encryp 3.1GHz ASIC Cache Ctl 250MHz FPGA Eth Pkt

15

Benetfits of TL-Verilog

Less code, fewer bugs!
Less code change, fewer bugs!
Typically:

- 1/ the code

- ~1/4 the change for reuse
- ~%the code for HLM

In certain real-world cases:

- 1/200 the code change!

16

More to TL-Verilog

- Hierarchy

- State

- Validity

- Clock gating
- Transactions!

(and more in proposal phase)

17

makerchip.com

N
m‘a‘.‘iiirclﬂip PROJECT~ TUTORIALS v HELP ~ saved 4 minutes ago

EDITOR | v NAV-TLV [EERY ~ DIAGRAM M
5
Saa_sq[7:0] = $aa[3:0] ** 2;

$bb_sq[7:0] = $bb[3:0] ** 2;

LOG

@2

Scc_sq[B8:0] = $aa_sq + $bb_sq;
@3

Scc[4:0] = sqrt(%$cc_s

$ec_
Saa_
TUTORIAL-VALID % sq= Last updated 10 minutes ago
|calc
+ WAVEFORM M
$
< ZOOM IN ZOOM OUT Z00OM FULL
$b—| A2 TR O

 EyEpEpEyEgEpNgNpERNyEREy

Figure 1: Pipelined Pythagorean Theorem Logic

This pipeline is 3 cycles deep. It has a throughput of one
fransaction per cycle, where a transaction performs one
Pythagorean Theorem calculation per cycle.

Lastupdated 10 n

18

Reach out to me at:

steve.hoover@redwoodeda.com

Learn more at:

makerchip.com

19

