
Timing-Abstract Circuit Design in
Transaction-Level Verilog

Steve Hoover
Founder, Redwood EDA
steve.hoover@redwoodeda.com

ICCD Nov. 8, 2017

Agenda

● Motivation
○ The complexity crisis
○ How we manage complexity today
○ What’s not working

● Timing-Abstract Design in TL-Verilog
● Results

2

Verilog
Verilog was born of a different era...

3

Year Processor Clock Transistors HDL IDE

1985 i386 33MHz 275K Verilog
(to verify)

Emacs/
vi

2017 AMD Epyc 3.0GHz
(~100x)

19.2B
(>70,000x)

Verilog XEmacs/
Vim

We can’t continue designing this way!

SoC Methodology

Manage complexity through modularity and reuse of IP
building blocks.
- IP utilized in different contexts, with different constraints for:

- area
- power
- performance
- test/debug infrastructure
- clock frequency

- RTL expresses an implementation,
with particular constraints

4

RTL is not good for IP!

CC BY-SA 3.0 - Cmglee

Design algorithm-level and let tools generate RTL, under
given physical constraints.

High-Level Synthesis

5

RTL

System-C
Abstraction

- Fantastic for some designs.
- For others, SystemC becomes RTL.

Many designs require RTL details!

The Need

We need to be able to model cycle-level interactions in a
way that is easier to manage.

6

A Simple Pipeline

a

b
c

c = sqrt(a^2 + b^2)

● Let’s compute Pythagoras's Theorem in hardware.
● We distribute the calculation over three cycles.

+
^2

^2
sqrt

c
a

b

flip-flop

A Simple Pipeline - Timing-Abstract

|calc

2 3Stage: 1

+
^2

^2
sqrt

c
a

b

➔ Flip-flops and
staged signals are
implied from
context.

8

Timing-abstract:

+
^2

^2
sqrt c

a

b

RTL:

A Simple Pipeline - TL-Verilog

9

|calc

2 3Stage: 1

+
^2

^2
sqrt

$cc
$aa

$bb

|calc
 @1
 $aa_sq[31:0] = $aa * $aa;
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @3
 $cc[31:0] = sqrt($cc_sq);

TL-Verilog

SystemVerilog vs. TL-Verilog

10

// Calc Pipeline
logic [31:0] a_C1;
logic [31:0] b_C1;
logic [31:0] a_sq_C1,
 a_sq_C2;
logic [31:0] b_sq_C1,
 b_sq_C2;
logic [31:0] c_sq_C2,
 c_sq_C3;
logic [31:0] c_C3;
always_ff @(posedge clk) a_sq_C2 <= a_sq_C1;
always_ff @(posedge clk) b_sq_C2 <= b_sq_C1;
always_ff @(posedge clk) c_sq_C3 <= c_sq_C2;
// Stage 1
assign a_sq_C1 = a_C1 * a_C1;
assign b_sq_C1 = b_C1 * b_C1;
// Stage 2
assign c_sq_C2 = a_sq_C2 + b_sq_C2;
// Stage 3
assign c_C3 = sqrt(c_sq_C3);

System
Verilog

|calc
 @1
 $aa_sq[31:0] = $aa * $aa;
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @3
 $cc[31:0] = sqrt($cc_sq);

TL-Verilog
~3.5x

|calc

+

^2

^2

sqrt
c

a

b

Retiming -- Easy and Safe
|calc
 @1
 $aa_sq[31:0] = $aa * $aa;
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @3
 $cc[31:0] = sqrt($cc_sq);

2 31 40

|calc
 @0
 $aa_sq[31:0] = $aa * $aa;
 @1
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @4
 $cc[31:0] = sqrt($cc_sq);

$aa_sq
$cc_sq

|calc

2 31

+
^2

$bb_sq sqrt $cc
$aa

$bb

40

^2

==

Staging is a physical attribute. No impact to behavior.

$aa_sq
$cc_sq

|calc

2 31

+
^2

$bb_sq sqrt
$cc

$aa

$bb

40

^2

Retiming in SystemVerilog

12

// Calc Pipeline
logic [31:0] a_C1;
logic [31:0] b_C1;
logic [31:0] a_sq_C0,
 a_sq_C1,
 a_sq_C2;
logic [31:0] b_sq_C1,
 b_sq_C2;
logic [31:0] c_sq_C2,
 c_sq_C3,
 c_sq_C4;
logic [31:0] c_C3;
always_ff @(posedge clk) a_sq_C2 <= a_sq_C1;
always_ff @(posedge clk) b_sq_C2 <= b_sq_C1;
always_ff @(posedge clk) c_sq_C3 <= c_sq_C2;
always_ff @(posedge clk) c_sq_C4 <= c_sq_C3;
// Stage 1
assign a_sq_C1 = a_C1 * a_C1;
assign b_sq_C1 = b_C1 * b_C1;
// Stage 2
assign c_sq_C2 = a_sq_C2 + b_sq_C2;
// Stage 3
assign c_C3 = sqrt(c_sq_C3);

Very bug-prone!

|inst
 @3
 $op_a[63:0] =
 ($op_a_src == REG) ? >>2$reg_data :
 ($op_a_src == BYP) ? >>1$rslt :
 ($op_a_src == IMM) ? $imm_data :
 ($op_a_src == MEM) ? /top|mem>>5$mem_data :
 64'b0;

Operand Mux
$reg_data

$rslt

$imm_data

$mem_data

$op_a

|inst

|mem
3 4

5 6 7

5

84

2

9

A
L
U

13

Operand Mux Retimed
$reg_data

$rslt

$imm_data

$mem_data

$op_a

|inst

|mem
3 4

5 6 7

5

84

2

9

A
L
U

14

|inst
 @4
 $op_a[63:0] =
 ($op_a_src == REG) ? >>2$reg_data :
 ($op_a_src == BYP) ? >>1$rslt :
 ($op_a_src == IMM) ? $imm_data :
 ($op_a_src == MEM) ? /top|mem>>5$mem_data :
 64'b0;

Code Size Results from Industry Examples

15

Benefits of TL-Verilog

Less code, fewer bugs!

Less code change, fewer bugs!

Typically:

- ½ the code
- ~¼ the change for reuse
- ~⅙ the code for HLM

In certain real-world cases:

- 1/200 the code change!

16

More to TL-Verilog

- Hierarchy
- State
- Validity
- Clock gating
- Transactions!

(and more in proposal phase)

17

makerchip.com

18

Be a part of it!

Reach out to me at:

steve.hoover@redwoodeda.com

Learn more at:

makerchip.com

19

