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Verilog

Verilog was born of a different era...

Year | Processor | Clock Transistors | HDL

1985 | 1386 33MHz | 275K Verilog
(to verify)
2017 | AMD Epyc | 3.0GHz | 19.2B Verilog

(~100x) | (>70,000x)

We can’t continue designing this way!
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SoC Methodology

Manage complexity through modularity and reuse of IP
building blocks.

- IP utilized in different contexts, with different constraints for:
- darea
- power
- performance
- test/debug infrastructure
- clock frequency )
- RTL expresses an implementation,

with particular constraints

RTL is not good for IP!
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High-Level Synthesis

Design algorithm-level and let tools generate RTL, under
given physical constraints.

‘ System-C

Abstraction RTL

- Fantastic for some designs.
- For others, SystemC becomes RTL.

Many designs require RTL details!



We need to be able to model cycle-level interactions in a
way that is easier to manage.



A Simple Pipeline

e Let’s compute Pythagoras's Theorem in hardware.
e We distribute the calculation over three cycles.
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A Simple Pipeline - Timing-Abstract
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A Simple Pipeline - TL-Verilog

TL-Verilog

| |
1 t Q1

ha ) | $aa sq[31:0] = $aa * Saa;
I I $dc $bb_sq[31:0] = $bb * $bb;
| | sqrt > @2

b ND | $cc_sq[31:0] = $aa _sq + $bb_sq;

. L @3

Stage: 1 : 2 I 3 $cc[31:0] = sqrt(Scc_sq);




SystemVerilog vs. TL-Verilog

| I SyStem // Calc Pipeline
i Verilog | logic [31:0] a C1;
logic [31:0] b _C1;
| sqrt > logic [31:0] a_sq C1,
a sq C2;
I logic [31:0] b_sq C1,
I I b sq C2;
logic [31:0] c_sq C2,
c_sq _C3;
logic [31:0] c_C3;
always ff @ (posedge clk) a sq C2 <= a_sq Cl;
always ff @ (posedge clk) b sq C2 <= b _sq Cl;
always ff @ (posedge clk) c_sq C3 <= c_sq C2;
Q1 // Stage 1

$aa sq[31:0] $aa * $aa; ass%gn a_sq Cl

$bb sq[31:0] = $bb * $bb; assign b_sq_Cl
@2 B // Stage 2

$cc sq[31:0] $aa sq + $bb sq; assign c_sq_C2
@3 B . - // Stage 3
assign c¢_C3 = sqrt(c_sq C3);

TL-Verilog

a Cl *acCl;
b Cl1 * b C1;

a sq C2 + b sq C2;

$cc[31:0] = sqrt(Scc_sq);
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Retiming -- Easy and Safe

@1

@2

@3

$aa sq[31:
$bb_sq[31:

$cc_sq[31:

$cc[31:0]

$Saa * Saa;
Sbb * S$bb;

$aa _sq + $bb_sqg;

sqgrt ($cc_sq) ;

@o

@1

@2

@4

A\

$aa_sq[31:
$bb_sq[31:

$cc_sq[31:

$cc[31:0]

Saa * $Saa;
$bb * $bb;
$aa_sq + $bb_sq;

sqgrt ($cc_sq) ;

E Staging is a physical attribute. No impact to behavior.

|calc
$a
sqrt e
$
3 4
|calc
$a
sqrt
$
3 4




Retiming in SystemVerilog

// Calc Pipeline
logic [31:0] a C1;
logic [31:0] b C1;
logic [31:0] a_sq CO,
a sq C1,
a sq C2;
logic [31:0] b_sq C1,
b sq C2; |
logic [31:0] c sgq C2, ougo
caqca, Vvery BUG—PR
c_sq C4;
logic [31:0] c_C3;
always ff @ (posedge clk) a sq C2 <= a_sq Cl;
always ff @ (posedge clk) b sq C2 <= b sq Cl;
always ff @ (posedge clk) c sq C3 <= c sq C2;
always ff @ (posedge clk) c _sq C4 <= c_sq C3;
// Stage 1
assign a sq Cl = a Cl * a Cl;
assign b sq C1 = b C1 * b C1;
// Stage 2
assign ¢ _ sq C2 = a_sq C2 + b sq C2;
// Stage 3
assign c¢ C3 = sqrt(c sq C3); 12




Operand Mux

| : $rengata : :
linst I 1 $rslt I |
| I, | |
$imm_idata " | |
| . "N: o
| | ] |
] | | ]
2|mem : 3 $mem 'data - > .
I i i i i i
(’ Il 41 5161 71 81 9)
@3
$op_a[63:0] =
(Sop_a src == REG) ? >>2$reg data :
(Sop_a src == BYP) ? >>1Srslt
(Sop_a src == IMM) ? $imm data
(Sop_a_src == MEM) ? /top >>5%mem data :
64'b0;
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Operand Mux Retimed

$reg_data
linst : :
| |
$imm_|data |
I _l;'
|
| |
2 ' 3 5 '
|mem
L} | | | | | | | |
(’I4I5I6I7I8|9)
$op_a[63:0] =
(Sop_a src == REG) ? >>2$reg data :
(Sop_a src == BYP) ? >>1Srslt
(Sop_a src == IMM) ? $imm data
(Sop_a_src == MEM) ? /top >>5%mem data :
64'b0;
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Code Size Results from Industry Examples

Characters of Code (excl. comments & spaces)

30 000.00

""""" B Crig 5V
B TL-veriog
Gen SV
22 500.00
15,000.00
7.500.00
0.00

3.2GHz ASIC Encryp 3.1GHz ASIC Cache Ctl 250MHz FPGA Eth Pkt
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Benetfits of TL-Verilog

Less code, fewer bugs!
Less code change, fewer bugs!
Typically:

- 1/ the code

- ~1/4 the change for reuse
- ~%the code for HLM

In certain real-world cases:

- 1/200 the code change!
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More to TL-Verilog

- Hierarchy

- State

- Validity

- Clock gating
- Transactions!

(and more in proposal phase)
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Saa_sq[7:0] = $aa[3:0] ** 2;

$bb_sq[7:0] = $bb[3:0] ** 2;

LOG

@2

Scc_sq[B8:0] = $aa_sq + $bb_sq;
@3

Scc[4:0] = sqrt(%$cc_s

$ec_
Saa_
TUTORIAL-VALID % sq= Last updated 10 minutes ago
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Figure 1: Pipelined Pythagorean Theorem Logic

This pipeline is 3 cycles deep. It has a throughput of one
fransaction per cycle, where a transaction performs one
Pythagorean Theorem calculation per cycle.

Lastupdated 10 n
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Reach out to me at:

steve.hoover@redwoodeda.com

Learn more at:

makerchip.com
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