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Abstract​—Given the complexity of modern integrated circuits,       
design reuse is essential, but current hardware description        
languages do not adequately address reuse challenges for many         
classes of design. Processor cores, as an example, are shaped by           
cycle-level interactions, and leveraging such designs into       
environments with different timing constraints requires retiming,       
repipelining, and microarchitectural changes. Making these      
changes at the register-transfer level requires significant       
rewriting. Abstraction is needed, but the abstractions of SystemC         
and OpenCL are more appropriate for loosely-coupled       
microarchitectural​ ​interactions. 

A ​timing-abstract modeling approach is presented that       
separates the concerns of behavior and timing. Timing-abstract        
behavior is specified within the context of pipelines, and logic          
within pipelines is assigned to pipeline stages as a matter of           
implementation detail. Sequential elements are generated by tools        
from the pipelined specification. Logic can be retimed easily,         
without the risk of introducing functional bugs, so design and          
verification effort can be focused on the behavioral changes         
required to retarget a design to a context with different timing           
constraints. As a secondary benefit, significantly less source code         
is​ ​required​ ​to​ ​specify​ ​register-transfer-level​ ​detail. 

Keywords—electronic design automation; digital logic; circuit;      
hardware; software; language; compiler; pipeline; retiming;      
productivity 

I. INTRODUCTION 

Not long after the introduction of register-transfer-level       
(RTL) logic in the mid 1980’s, there was a recognized need           
for languages that provided a higher level of abstraction in the           
design process. By the 1990’s, research into higher-level        
modeling languages was very active [1][2], but, as new         
languages failed to gain broad adoption, optimism waned, and,         
even today, RTL remains the predominant design       
methodology. The need for better methodology, however, has        
continued to escalate under the pressures of Moore’s Law [3].          
Transistor counts have grown 25,000x, since the adoption of         
RTL in the mid-1980s, and clock frequencies have increased         
by a factor of 100. Over the past decade alone, despite           
significant advancements in electronic design automation, the       
effort to design a single chip has increased by nearly a factor            
of five [4], and today, the design of a single chip can occupy a              
team of hundreds of engineers for several years. A         

continuation​ ​in​ ​this​ ​trend​ ​is​ ​unsustainable. 

The most significant productivity improvement over the       
past decade has come from the adoption of system-on-chip         
(SoC) design methodology [5]. Rather than designing full-chip        
RTL code from scratch, a full-chip model is assembled from          
intellectual property (IP) building blocks, delivered by other        
teams or other companies. This focus on modularity and reuse          
is​ ​essential​ ​to​ ​managing​ ​complexity. 

SoC methodology, however, faces significant challenges      
and limitations when done at the register-transfer level. When         
designs were monolithic, RTL code was written for one         
specific implementation with specific physical constraints in       
mind. The clock speed, performance target, floorplan, and        
power budget became deeply reflected in the RTL code. A          
subsequent generation of a design might implement a similar         
microarchitecture, but the RTL code would be largely        
rewritten to meet new physical design constraints. A reusable         
IP block, on the other hand, cannot be designed with the actual            
physical constraints of any one implementation in mind. It         
must be designed with assumptions about its constraints, and it          
cannot be easily leveraged outside of these assumptions.        
Among these assumptions, the depth of logic that can fit          
within a clock period most-significantly influences RTL IP.        
This is dictated by the clock speed and the technology, which           
typically​ ​differ​ ​between​ ​implementations. 

For these reasons, it is desirable to express designs at a           
higher level of abstraction and to allow tools to synthesize the           
abstract designs into gates based on design constraints. This is          
the goal of high-level synthesis (HLS). Various high-level        
modeling approaches have been explored along with their        
potential to synthesize to gates [1][2][16]. Industry momentum        
currently centers around synthesizing hardware from      
C/C++-based models using SystemC [6][7][8][9] or OpenCL.       
Several other languages are available that provide incremental        
improvements in abstraction, including Bluespec     
SystemVerilog [10][11] and Chisel [12]. These remain explicit        
about sequential elements (flip-flops and latches) and       
therefore do not provide sufficient abstraction to avoid        
redesign. 

SystemC and OpenCL have gained momentum because of        
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the significant role that software modeling plays in the design          
and verification of hardware. Synthesizing software into       
hardware is a challenging task that has taken the industry a           
few decades to bring to fruition. Tools must bridge the gap           
from software, which is fundamentally sequential, to       
hardware, which is fundamentally parallel. Creativity has been        
applied to the challenge of providing constructs and        
concurrency models appropriate for hardware within a       
software language. Synthesis from software is an important        
enabler for several activities. These include converting       
existing software to run as hardware, developing code that can          
run as either software or hardware, enabling software        
developers to develop hardware, and cleanly integrating       
hardware models with software and verification models. For        
the specific task of modeling hardware, however, the use of          
C++ language semantics presents complications for both       
designers​ ​and​ ​tools. 

For certain design spaces, C/C++-based HLS tools       
successfully enable the development of flexible hardware       
models that can be implemented under different design        
constraints. HLS is good for constructing optimized       
computational pipelines such as those found in digital signal         
processors and graphics processing units, and it is good for          
timing-insensitive​ ​communication​ ​channels. 

Control-intensive designs, however, have complex     
cycle-level interactions that require fundamental     
microarchitectural changes when design constraints change.      
As an example, a central processing unit (CPU) must contend          
with structural, control, and data hazards. It must schedule         
and slot instructions around register dependencies and       
resources, it must provide register bypass paths, and it must          
make predictions and recover from mispredictions. At a higher         
frequency, a new pipeline stage and a new bypass path might           
be required, with potential impact to these mechanisms.        
Though there has been research toward automating certain        
microarchitectural transformations [16], generalized    
fully-automated optimizations are not in sight. Designers       
make tradeoffs with workloads in mind, and this information         
is​ ​not​ ​available​ ​to​ ​HLS​ ​tools. 

This paper describes a modeling approach where       
cycle-level detail is provided within the context of a         
timing-abstract behavioral model. This approach addresses the       
conflicting goals of having explicit cycle-level detail in the         
source code and having the ability to change details without          
disruptive rewrites. Section II of this paper introduces a         
pipeline construct that provides a timing-abstract context for        
specifying cycle-level details. Section III describes how       
complex logic with feedback and feed-forward paths, as well         
as interactions between pipelines, can be expressed with        
cycle-level detail. The potential for cycle-approximate and       
untimed models is explored in Section IV. Section V         
addresses the need to control sequential elements, or        
“sequentials,” and clocking networks, which are no longer        
explicit in the model. Section VI presents analysis of the          
impact of microarchitectural changes and the compactness of        
the timing-abstract code compared with SystemVerilog RTL.       

Finally,​ ​the​ ​paper​ ​is​ ​summarized​ ​in​ ​Section​ ​VII. 

II. TIMING-ABSTRACT​ ​PIPELINES 

Pipelines are a fundamental part of any high-performance        
digital integrated circuit design. Fig. 1 illustrates a simple         
pipeline that is performing a Pythagorean theorem calculation        
(c​ ​=​ ​sqrt(a​2​​ ​+​ ​b​2​)). 

 

Fig. 1. Pipelined​ ​Pythagorean​ ​theorem​ ​calculation​ ​diagram. 

Various coding styles are possible with SystemVerilog.       
The SystemVerilog expression of this pipeline shown in Fig. 2          
adheres to one recommended coding style in which        
sequentials are kept separate from combinational logic, and        
signals​ ​are​ ​named​ ​to​ ​reflect​ ​their​ ​pipeline​ ​stages. 

 

Fig. 2. Pipelined​ ​Pythagorean​ ​theorem​ ​calculation​ ​in​ ​SystemVerilog. 

This same design is coded in a timing-abstract        
representation in Fig. 3, using a language extension of         
SystemVerilog, called Transaction-Level Verilog, or     
TL-Verilog. TL-Verilog was developed originally at Intel       
Corporation, driven in large part by the author, and is now an            
evolving​ ​open​ ​language​ ​standard. 

 



 

 

 

 

 

 

Fig. 3. Pipelined​ ​Pythagorean​ ​theorem​ ​calculation​ ​in​ ​TL-Verilog​. 

Several​ ​TL-Verilog​ ​constructs​ ​are​ ​introduced​ ​in​ ​Fig.​ ​3. 

Pipesignals: Identifiers such as ​$aa in Fig. 3, are termed          
pipesignals​. A pipesignal represent a signal and all staged         
versions of that signal. The SystemVerilog code has two         
signals corresponding to ​$aa_sq​, a version for stage 1 and a           
version​ ​for​ ​stage​ ​2. 

Pipelines: TL-Verilog introduces a scope construct for       
pipelines -- ​|calc in Fig. 3. These pipelines are free-flowing          
without back-pressure. They provide a mechanism for       
abstracting​ ​time. 

Pipestages: TL-Verilog also introduces a scope construct       
for​ ​pipeline​ ​stages,​ ​or​ ​​pipestages​,​ ​within​ ​pipelines,​ ​such​ ​as​ ​​@1​. 

Fig. 4 illustrates how the timing-abstract representation       
differs from the RTL representation. Flip-flops are implied        
where​ ​pipesignals​ ​cross​ ​pipestage​ ​boundaries. 

 

Fig. 4. RTL​ ​versus​ ​timing-abstract​. 

Strictly speaking, the timing-abstract behavioral model      
does not include the pipestage specifications. These have no         
impact on the overall behavior of the model. A timed signal,           
such as the pipeline output ​$cc at stage ​@3​, exhibits an           
identical waveform regardless of the staging of the logic that          
produces it. Pipeline staging is considered to be a physical          
attribute, or ​augmentation​, describing an implementation of       
the behavioral model. A timing-abstract model, together with        
timing​ ​augmentation​ ​is​ ​termed​ ​a​ ​​timing-augmented​​ ​model. 

Logic retiming (described in [13]) at a statement level is a           
simple matter of changing timing augmentation and does not         
carry the risk of introducing bugs. Even if a pipesignal is           

consumed in an earlier stage than it is produced, this is a            
reflection of an infeasible physical implementation and does        
not reflect upon the validity of the timing-abstract behavioral         
model. In TL-Verilog, every logic statement belongs to a         
pipeline and can therefore be retimed. (For convenience, a         
default pipeline and pipestage are assumed for statements that         
are​ ​not​ ​explicitly​ ​scoped.)  

A few other aspects of TL-Verilog that are apparent in Fig.           
3 warrant explanation. A pipesignal’s type, such as ​[31:0]​,         
is included in its assignment statement; a separate type         
declaration is not required. Assignment statements use Verilog        
assign statement syntax, but the ​assign/always_comb      
keyword is not required, and pipesignals are generally used in          
place​ ​of​ ​signals. 

III. PIPELINE​ ​INTERACTIONS 

Expressing cycle-level detail in the source code is most         
important for designs with a large number of feedback and          
feed-forward paths and interactions among pipelines. Fig. 5        
shows an example in the context of a CPU instruction          
execution pipeline that includes such interactions. The shaded        
multiplexer (mux) is selecting an operand for an arithmetic         
logic unit (ALU). The four sources to the mux, ordered from           
top​ ​to​ ​bottom​ ​in​ ​both​ ​Fig.​ ​5​ ​and​ ​Fig.​ ​6,​ ​are: 

1. the result from the previous instruction, one stage        
ahead​ ​in​ ​the​ ​instruction​ ​pipeline 

2. a​ ​register​ ​value​ ​from​ ​the​ ​register​ ​file 
3. an​ ​immediate​ ​value​ ​embedded​ ​in​ ​the​ ​instruction 
4. a value being returned from memory, from the ​|mem         

pipeline. 

 

Fig. 5. Operand​ ​mux​ ​logic. 

 

Fig. 6. Operand​ ​mux​ ​code. 

This​ ​example​ ​introduces: 

Pipeline Alignment: The ​>> (​ahead​) or ​<< (​behind​)        
syntax, or ​pipeline alignment specifier, provides the stage of a          

 



 

 

referenced pipesignal relative to the stage of the assignment         
statement. 

As will be discussed further, the use of relative alignments          
is key to enabling safe retiming of logic where transactions do           
interact. It also clarifies the nature of the interaction. Each          
mux-source​ ​expression​ ​demonstrates​ ​a​ ​different​ ​alignment. 

1. Source 1 (​>>1​$rslt​) is the result from the previous         
instruction, which is in stage 4 of the pipeline. Since          
it is consumed by the mux in stage 3, the reference to            
$rslt is given an alignment of (4 - 3), or ​>>1​. ​>>1           
references the transaction that is one cycle ahead in         
its​ ​pipeline. 

2. Source 2 (​>>2​$reg_data​) is from the register       
logic in stage 5, and so has an alignment of (5 - 3), or              
>>2​, suggesting that the source reflects the       
transaction​ ​that​ ​is​ ​two​ ​cycles​ ​ahead. 

3. Source 3 (​$imm_data​) is immediate data from the        
instruction flowing through the pipeline, used by the        
instruction itself. Therefore, there is no offset for this         
interaction (3 - 3 = 0), and an offset specification of           
zero is assumed. This can be referred to as a          
naturally-aligned reference as it reflects the natural       
flow of the pipeline. (All references in the        
Pythagorean theorem example were    
naturally-aligned.) 

4. Source 4 (​/top​|mem​>>5​$mem_data​) is from a      
different pipeline altogether. ​/top​|mem provides     
the pipeline scope of the referenced pipesignal,       
$mem_data​, and the pipestage is given by the        
alignment, ​>>5​, which gives us a pipestage of 3 + 5,           
or​ ​8. 

To illustrate logic retiming in the face of pipeline         
interactions, Fig. 6 modifies Fig. 5 to address a scenario where           
a timing path into the mux exceeds the cycle time. The issue is             
addressed​ ​by​ ​retiming​ ​the​ ​mux​ ​to​ ​cycle​ ​4. 

 

Fig. 7. Operand​ ​mux​ ​moved​ ​to​ ​stage​ ​4. 

The impact of this change is that each mux source is taken            
from a delayed version of its prior input, and the mux output            
no longer requires staging. Implementing this simple change        
in RTL code is non-trivial and rather bug prone. Two          
(64-bit-wide) flip-flops must be added and one removed; one         
signal must be added and one removed. Signal names in the           
mux expression must be change to reflect their new stage. In           
TL-Verilog, however, the change is trivial. The stage scope of          
the mux is simply changed from ​@3 to ​@4​, and, since the            

behavioral model has not been changed, functionality is        
preserved. The use of signal references with relative stage         
alignments has preserved the ease of logic retiming in the face           
of​ ​pipeline​ ​interactions. 

IV. TIMING-PRECISION 

It is not always necessary to be precise about timing in the            
source code. Logic synthesis and HLS tools are quite capable          
of retiming a design to optimize its implementation. Where         
they can be allowed to do so, the effort of timing closure can             
be significantly reduced. Reflecting a degree of reality in the          
source code however does enhance a logic designer’s ability to          
reason about cycle-level interactions. It also presents synthesis        
tools with less work to do with each synthesis run. An           
approximately-timed model can provide a good balance,       
especially as it eliminates the need to break up single logic           
statements​ ​that​ ​would​ ​physically​ ​span​ ​cycle​ ​boundaries. 

In some cases, precise timing is called for. Some design          
teams, especially those implementing very aggressive designs,       
employ tools and flows that manipulate sequentials after        
synthesis based on pre-synthesis knowledge of the sequentials.        
These flows can include scan chain insertion and clock         
network generation. When such flows are employed synthesis        
cannot be permitted to retime logic. Precise timing is also          
valuable for correlating the physical design back to the source          
code. Timing paths, for example are reported from one         
sequential element to another. Even if allowing synthesis        
retiming is feasible, it can be reasonable to achieve a certain           
level of timing closure without synthesis retiming and enable         
it​ ​as​ ​timing​ ​targets​ ​are​ ​narrowed. 

At varying levels of detail, retiming and repipelining will         
continue to be a significant part of the process of targeting an            
IP block to a particular implementation. Safe and easy         
retiming results in fewer builds, fewer simulations, fewer        
bugs, and less debug effort. Regression testing is unnecessary         
if timing changes can be shown at the source-code level to           
have no impact on behavior. Physical timing closure effort can          
be substantially reduced if physical designers or automated        
tools can be empowered to apply timing changes to the source           
code​ ​with​ ​minimal​ ​or​ ​no​ ​involvement​ ​from​ ​the​ ​logic​ ​designer. 

Though this paper focuses on cycle-based design, in which         
all sequentials are flip-flops, phase-granular timing      
augmentation is also possible. Staging can be specified on the          
alternate phase of the clock, and latch-based logic can be          
implied. Retiming of level-sensitive circuits is explored in        
[14]. The transparency of latches avoids the need to partition          
logic to precise cycle boundaries and avoids some overhead         
from setup and hold time requirements. Phase-based design        
generally suffers a small area penalty, more so in         
field-programmable gate arrays, where latches may not be        
available. Furthermore, since phase-based pipelines have      
roughly double the number of sequentials to manage, design         
and maintenance costs are a significant deterrent. Using        
timing-augmentation, the design overhead is minimal. The       
remainder of this paper, however, focuses on cycle-based        
design​ ​to​ ​retain​ ​focus​ ​on​ ​the​ ​core​ ​contribution. 

 



 

 

 

V. CONTROLLING​ ​THE​ ​CLOCK​ ​NETWORK​ ​AND​ ​SEQUENTIALS 

When introducing abstraction, it is important to understand        
the degree of control that is sacrificed. Though the         
timing-augmented models are precise about the existence of        
every sequential, it is up to tools to create these sequentials, as            
well as their controlling inputs. While RTL code can be          
explicit about reset, enable, clock, and scan inputs, these         
require​ ​special​ ​consideration​ ​for​ ​timing-augmented​ ​models. 

Sequentials with synchronous reset support simply include       
combinational logic, such as ​AND NOT reset​. This logic         
can be provided explicitly in the timing-abstract models and         
synthesis tools are capable of choosing sequential logic cells         
with reset inputs where appropriate. Since timing abstraction        
deals only with synchronous logic, asynchronous reset       
conditions are outside the scope of timing-abstract modeling.        
So, no special language support is required to support reset          
sequentials. 

Scan logic is rarely explicit in RTL in modern         
methodologies. It is generally inserted automatically.      
Partial-scan methodologies might require explicit     
identification of the sequentials to which to apply scan, and          
regardless of whether the source code is RTL or         
timing-augmented, this remains possible only if synthesis       
retiming is not permitted. Scan is not an obstacle for          
timing-abstraction. 

Enable sequentials use their enable inputs to internally        
generate conditioned versions of the clock with pulses only for          
enabled cycles. Power is saved by the removal of transitions          
on the clock as well as the prevention of transitions on the            
outputs. An enable flip-flop has the same behavior as an          
unconditioned flip-flop that has its output recirculated when        
the enable condition is not asserted. As with synchronous reset          
sequentials, enable sequentials can also be inferred by modern         
logic synthesis tools, so again no special provision is required          
(though TL-Verilog does provide an explicit construct for        
recirculation). 

Lastly, clock gating is similar to clock enabling, but the          
conditions are applied further upstream in the clocking        
network, and conditions influence multiple sequentials. Clock       
gating saves more power than clock enabling by avoiding         
distribution of the unneeded clock pulses. Gating conditions        
must be explicit in the source code, and, depending upon the           
tool flow in use, it may be necessary for the generation of            
gated clock signals to be explicit to some degree as well.           
Information must be exposed in timing-augmented models that        
enables​ ​generation​ ​of​ ​high-quality​ ​clock-gating​ ​networks. 

In TL-Verilog this need is addressed by exposing        
information as to when logic expressions are computing        
meaningful results. This information determines the need for        
clock pulses. To illustrate this, Fig. 8 is a modification of Fig.            
3. It introduces a ​when condition scope, ​?$valid​, that         
applies to all the logic of the pipeline, across all stages. It            
indicates that the pipeline logic is valid only when ​$valid          
(whose assignment is not included in the code snippet) is          
correspondingly asserted. When a pipesignal’s value is known        

to be invalid, it is not necessary to propagate it through           
sequentials. Thus the various staged versions of ​$valid        
provide an enable or gating condition for the sequentials. It is           
up to the tools processing TL-Verilog code to provide         
appropriate specification of the clock gating network from this         
condition information. Clock-gating logic, which is typically a        
disruptive afterthought, can be in place in a design from the           
start. 

 

Fig. 8. Pythagorean​ ​theorem​ ​with​ ​validity. 

When conditions are motivated not only by the need for          
control over the clocking network but also from a functional          
modeling perspective. Knowledge of validity enables      
detection of inadvertent consumption of invalid signal values.        
This can be implemented by generating assertions or by         
modeling invalid states as don’t care (X) values, which will          
propagate. Conveying invalidity is useful for debug activities        
as well. In Fig. 7, the pipeline flow of the Pythagorean           
theorem example is clear because of the X states in the           
waveform, and the meaningful transactions are easily       
identified. 

 

Fig. 9. Pythagorean​ ​theorem​ ​pipeline​ ​trace. 

In summary, all necessary control over sequential elements        
is retained in timing-augmented TL-Verilog models. ​When       
conditions are a lightweight mechanism to convey design        
intent which provides clock gating or clock enabling, enables         
additional​ ​checking,​ ​and​ ​simplifies​ ​debug. 

VI. RESULTS 

This section compares TL-Verilog models to equivalent       
SystemVerilog models and characterizes code in order to        
isolate the impact of timing abstraction. First a contrived         
long-division example is presented and analyzed in its        
completion. Analysis includes a breakdown of TL-Verilog and        
generated SystemVerilog code as well as analysis of the         
impact of a repipelining change. Subsequently, statistics are        
shared from three industry examples that were converted by         

 



 

 

 

 

hand from Verilog/SystemVerilog to TL-Verilog. In all cases,        
Redwood EDA’s SandPiper™ code generator was used which        
reads​ ​in​ ​TL-Verilog​ ​code​ ​and​ ​produces​ ​SystemVerilog​ ​code. 

The long-division example in Fig. 10 computes A/B to         
four fractional hexadecimal digits. A and B are each a single           
hexadecimal digit, where A < B. In each of four successive           
cycles, a new digit of the quotient is calculated. This          
calculation is placed within a pipeline with control logic in          
stage​ ​0​ ​and​ ​the​ ​calculation​ ​in​ ​stage​ ​1. 

 

Fig. 10. Long​ ​Division​ ​TL-Verilog​ ​Code​ ​(Single-Cycle) 

Fig. 11 provides a breakdown of both the TL-Verilog code          
and the generated SystemVerilog code. Though the       
SystemVerilog code is machine generated, industry data will        
provide evidence that generated code reasonably approximates       
hand-generated code, following the chosen     
industry-recommended​ ​coding​ ​conventions. 

 

Fig. 11. Divider​ ​code​ ​breakdown. 

The data shows there is very little in the TL-Verilog code           
beyond assignment statements. The timing abstraction      
constructs for pipeline and pipestage scope account for very         
little code and provide context to generate staging flip-flops         

and clock gating logic. Though the SystemVerilog code is too          
large to include, TABLE I. provides examples of both         
TL-Verilog​ ​and​ ​SystemVerilog​ ​code​ ​in​ ​each​ ​category.  

TABLE I. CODE​ ​CATEGORIES​ ​BY​ ​EXAMPLE 

 TL-Verilog SystemVerilog 
Clock 
Gating 

- clk_gate 

gen_Clk_F_calc_valid_CALC

_02H(Clk_F_calc_valid_CAL

C_02H, ​ ​clk, 
calc_valid_CALC_01H, 

1'b1, ​ ​1'b0); 
Validity ?$calc_valid `WHEN(calc_valid_CALC_01H

) ​ ​... 
Code 
Struct. 

|calc always_comb, ​ ​begin, ​ ​end, 
... 

Staging @2 always_ff ​ ​@(posedge 
Clk_F_calc_valid_CALC_02H

) ​ ​Result_CALC_02H[15:0] 
<= ​ ​Result_CALC_01H[15:0]; 

Decl. - logic ​ ​[3:0] ​ ​Aa_CALC_01H; 

Logic $iteration[1:

0] ​ ​= 
>>1$calc_vali

d ​ ​? 
(>>1$iteratio

n ​ ​+ ​ ​1) ​ ​: ​ ​0; 

assign 

CALC_iteration_a0[1:0] ​ ​= 
CALC_calc_valid_a1 ​ ​? 
(CALC_iteration_a1 ​ ​+ ​ ​1) ​ ​: 
0; 

 

The TL-Verilog code, while preserving RTL detail and        
separating the concerns of timing and behavior, reduces code         
size substantially. Excluding comments and whitespace, the       
TL-Verilog code is smaller than the generated SystemVerilog        
code by a factor of 3.4. To a close approximation, the changes            
in the Declarations and Code Structure categories represent        
syntactic benefits of TL-Verilog, while the other changes        
reflect timing abstraction. Excluding the syntactic categories,       
the estimated reduction from timing abstraction for this        
example is 3.0. Research has shown a correlation, perhaps a          
superlinear​ ​one,​ ​between​ ​code​ ​size​ ​and​ ​bugs​ ​[15]. 

Reducing IP block development time, however, is not the         
primary goal of timing abstraction. The primary goal is to          
increase IP reuse by simplifying and reducing bugs in the          
process of optimizing IP blocks for specific implementations.        
A scenario is analyzed, next, in which the long division code           
is leveraged in a design that is running at a higher clock            
frequency. The calculation of each iteration involves a        
division, a multiplication, and a subtraction, which, in this         
scenario, no longer fit within a clock period. The         
multiplication and subtraction are moved to a new cycle, and          
successive iterations must be two cycles apart, not one. To          
maintain an average throughput of one result every four         
cycles, this redesign permits the interleaving of calculations on         
even and odd cycles. The resulting code is shown in Fig. 12,            
with​ ​modifications​ ​highlighted. 

There were two changes applied, one behavioral, and one         
only impacting the implementation of the behavior. The        
behavioral change was the change from a single cycle per          
iteration to two cycles per iteration. In other words, the          
alignment of one iteration to the next changed from one cycle           

 



 

 

(​>>1​) to two (​>>2​). This alignment change can be seen eight           
places in Fig. 12. Had the original code been designed in           
anticipation of this scenario, it could have easily been         
parameterized to support any alignment. The second change is         
the retiming of logic within the pipeline. This change is          
implemented with the addition of the ​@2 line (which could          
also​ ​have​ ​been​ ​parameterized). 

 

Fig. 12. Long​ ​Division​ ​TL-Verilog​ ​Code​​ ​(Two-Cycle) 

The number of lines and the number of characters of          
resulting change to the TL-Verilog and to the SystemVerilog         
produced by the SandPiper code generator are provided in         
Table II (excluding comments and whitespace). The       
SystemVerilog code, which is now 6.4 times the size of the           
TL-Verilog code, contains new flip-flops, new signal       
declarations, and two new gated clocks. Also, since the         
generated SystemVerilog signals reflect their pipestages,      
assignment statements that have been moved to new        
pipestages​ ​are​ ​impacted. 

TABLE II. CODE​ ​IMPACT​ ​OF​ ​CHANGES 

 TL-Verilog SystemVerilog 
Lines​ ​changed/added 7 34 

Chars​ ​changed/added 30 1122 

 

It is important to evaluate real-world scenarios as well.         
Fig. 13. shows code-size data from three stable, real-world         
examples of Verilog or SystemVerilog modules that were        
converted by hand to TL-Verilog. No data is currently         
available to analyze real-world IP block modifications, but        
these three examples provide meaningful code-size      
comparison with real-world hand-coded modules. Note that       
source lines left as Verilog or SystemVerilog were not         
included in the data. Most notably, this includes module         

interfaces. 

 

Fig. 13. Real-World​ ​Designs 

While significant code reduction was achieved, no detail        
was lost. Logic synthesis was run for two of the designs, and            
results demonstrated consistency with the original code. The        
original SystemVerilog of the first two cases adhered to a          
coding style similar to the generated SystemVerilog code.        
Clock-gating and X injection were introduced in the first case          
and improved in the second case in the process of converting.           
These aspects of the generated code provide value beyond the          
hand-written SystemVerilog and account for some of the code         
growth between the generated and original SystemVerilog.       
The third case shows less code reduction. The hand-coding         
style in this case was a denser style than that of the generated             
SystemVerilog. This style is common of FPGA designs and         
less common among high-frequency designs. It is also typical         
to see less reduction at lower clock frequencies as there are           
fewer​ ​sequentials​ ​to​ ​manage. 

The resulting pipelined expression of these designs       
exposed some benefits. For the third case, the designer was          
able to easily remove one of three stages from the main           
pipeline after conversion, which was reportedly a valuable        
improvement that would have been impractical to implement        
in the Verilog source code. One conceptual bug was known to           
be eliminated in the course of the conversions as a natural           
outcome of cleaner pipeline expression, though it is unknown         
whether this bug could manifest in the context of its full-chip           
model. 

VII. CONCLUSION 

The described modeling techniques expose a      
timing-abstract behavioral model that provides context for       
specifying cycle-level timing as a physical implementation       
detail. A pipeline construct provides the timing-abstract       
context, and a pipestage construct provides timing       
information. Expressions reference signals with an ​alignment       
that specifies a relative pipestage offset. Expressions in        
pipeline and pipestage context using relative references can be         
safely retimed without impacting functionality. Sequential      
elements are implied. Clock gating for these sequentials is         
derived from knowledge of the ​validity of pipelined        
computations. Validity information also results in cleaner       
modeling,​ ​error​ ​checking,​ ​and​ ​easier​ ​debug. 

The most impactful consequence of these techniques is an         
improved ability to reuse IP blocks in contexts with different          
timing constraints. Control-intensive designs, where the      

 



 

 

 

 

 

 

microarchitecture is a reflection of cycle-level considerations,       
call for reasonably precise modeling of timing. By isolating         
timing from behavior, and by enabling tools to manage the          
sequentials, microarchitectural changes motivated by     
repipelining​ ​can​ ​be​ ​made​ ​with​ ​minimal​ ​effort​ ​and​ ​risk. 
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