

Timing-Abstract​ ​Circuit​ ​Design​ ​in​ ​Transaction-Level
Verilog

Steven​ ​Hoover
Redwood​ ​EDA

Shrewsbury,​ ​MA,​ ​USA
steve.hoover@redwoodeda.com

Abstract​—Given the complexity of modern integrated circuits,
design reuse is essential, but current hardware description
languages do not adequately address reuse challenges for many
classes of design. Processor cores, as an example, are shaped by
cycle-level interactions, and leveraging such designs into
environments with different timing constraints requires retiming,
repipelining, and microarchitectural changes. Making these
changes at the register-transfer level requires significant
rewriting. Abstraction is needed, but the abstractions of SystemC
and OpenCL are more appropriate for loosely-coupled
microarchitectural​ ​interactions.

A ​timing-abstract modeling approach is presented that
separates the concerns of behavior and timing. Timing-abstract
behavior is specified within the context of pipelines, and logic
within pipelines is assigned to pipeline stages as a matter of
implementation detail. Sequential elements are generated by tools
from the pipelined specification. Logic can be retimed easily,
without the risk of introducing functional bugs, so design and
verification effort can be focused on the behavioral changes
required to retarget a design to a context with different timing
constraints. As a secondary benefit, significantly less source code
is​ ​required​ ​to​ ​specify​ ​register-transfer-level​ ​detail.

Keywords—electronic design automation; digital logic; circuit;
hardware; software; language; compiler; pipeline; retiming;
productivity

I. INTRODUCTION

Not long after the introduction of register-transfer-level
(RTL) logic in the mid 1980’s, there was a recognized need
for languages that provided a higher level of abstraction in the
design process. By the 1990’s, research into higher-level
modeling languages was very active [1][2], but, as new
languages failed to gain broad adoption, optimism waned, and,
even today, RTL remains the predominant design
methodology. The need for better methodology, however, has
continued to escalate under the pressures of Moore’s Law [3].
Transistor counts have grown 25,000x, since the adoption of
RTL in the mid-1980s, and clock frequencies have increased
by a factor of 100. Over the past decade alone, despite
significant advancements in electronic design automation, the
effort to design a single chip has increased by nearly a factor
of five [4], and today, the design of a single chip can occupy a
team of hundreds of engineers for several years. A

continuation​ ​in​ ​this​ ​trend​ ​is​ ​unsustainable.

The most significant productivity improvement over the
past decade has come from the adoption of system-on-chip
(SoC) design methodology [5]. Rather than designing full-chip
RTL code from scratch, a full-chip model is assembled from
intellectual property (IP) building blocks, delivered by other
teams or other companies. This focus on modularity and reuse
is​ ​essential​ ​to​ ​managing​ ​complexity.

SoC methodology, however, faces significant challenges
and limitations when done at the register-transfer level. When
designs were monolithic, RTL code was written for one
specific implementation with specific physical constraints in
mind. The clock speed, performance target, floorplan, and
power budget became deeply reflected in the RTL code. A
subsequent generation of a design might implement a similar
microarchitecture, but the RTL code would be largely
rewritten to meet new physical design constraints. A reusable
IP block, on the other hand, cannot be designed with the actual
physical constraints of any one implementation in mind. It
must be designed with assumptions about its constraints, and it
cannot be easily leveraged outside of these assumptions.
Among these assumptions, the depth of logic that can fit
within a clock period most-significantly influences RTL IP.
This is dictated by the clock speed and the technology, which
typically​ ​differ​ ​between​ ​implementations.

For these reasons, it is desirable to express designs at a
higher level of abstraction and to allow tools to synthesize the
abstract designs into gates based on design constraints. This is
the goal of high-level synthesis (HLS). Various high-level
modeling approaches have been explored along with their
potential to synthesize to gates [1][2][16]. Industry momentum
currently centers around synthesizing hardware from
C/C++-based models using SystemC [6][7][8][9] or OpenCL.
Several other languages are available that provide incremental
improvements in abstraction, including Bluespec
SystemVerilog [10][11] and Chisel [12]. These remain explicit
about sequential elements (flip-flops and latches) and
therefore do not provide sufficient abstraction to avoid
redesign.

SystemC and OpenCL have gained momentum because of

©​ ​2017​ ​IEEE.​ ​Personal​ ​use​ ​of​ ​this​ ​material​ ​is​ ​permitted.​ ​Permission​ ​from​ ​IEEE​ ​must​ ​be​ ​obtained​ ​for​ ​all​ ​other​ ​uses,​ ​in​ ​any​ ​current​ ​or​ ​future​ ​media,​ ​including
reprinting/republishing​ ​this​ ​material​ ​for​ ​advertising​ ​or​ ​promotional​ ​purposes,​ ​creating​ ​new​ ​collective​ ​works,​ ​for​ ​resale​ ​or​ ​redistribution​ ​to​ ​servers​ ​or​ ​lists,​ ​or​ ​reuse
of​ ​any​ ​copyrighted​ ​component​ ​of​ ​this​ ​work​ ​in​ ​other​ ​works.

the significant role that software modeling plays in the design
and verification of hardware. Synthesizing software into
hardware is a challenging task that has taken the industry a
few decades to bring to fruition. Tools must bridge the gap
from software, which is fundamentally sequential, to
hardware, which is fundamentally parallel. Creativity has been
applied to the challenge of providing constructs and
concurrency models appropriate for hardware within a
software language. Synthesis from software is an important
enabler for several activities. These include converting
existing software to run as hardware, developing code that can
run as either software or hardware, enabling software
developers to develop hardware, and cleanly integrating
hardware models with software and verification models. For
the specific task of modeling hardware, however, the use of
C++ language semantics presents complications for both
designers​ ​and​ ​tools.

For certain design spaces, C/C++-based HLS tools
successfully enable the development of flexible hardware
models that can be implemented under different design
constraints. HLS is good for constructing optimized
computational pipelines such as those found in digital signal
processors and graphics processing units, and it is good for
timing-insensitive​ ​communication​ ​channels.

Control-intensive designs, however, have complex
cycle-level interactions that require fundamental
microarchitectural changes when design constraints change.
As an example, a central processing unit (CPU) must contend
with structural, control, and data hazards. It must schedule
and slot instructions around register dependencies and
resources, it must provide register bypass paths, and it must
make predictions and recover from mispredictions. At a higher
frequency, a new pipeline stage and a new bypass path might
be required, with potential impact to these mechanisms.
Though there has been research toward automating certain
microarchitectural transformations [16], generalized
fully-automated optimizations are not in sight. Designers
make tradeoffs with workloads in mind, and this information
is​ ​not​ ​available​ ​to​ ​HLS​ ​tools.

This paper describes a modeling approach where
cycle-level detail is provided within the context of a
timing-abstract behavioral model. This approach addresses the
conflicting goals of having explicit cycle-level detail in the
source code and having the ability to change details without
disruptive rewrites. Section II of this paper introduces a
pipeline construct that provides a timing-abstract context for
specifying cycle-level details. Section III describes how
complex logic with feedback and feed-forward paths, as well
as interactions between pipelines, can be expressed with
cycle-level detail. The potential for cycle-approximate and
untimed models is explored in Section IV. Section V
addresses the need to control sequential elements, or
“sequentials,” and clocking networks, which are no longer
explicit in the model. Section VI presents analysis of the
impact of microarchitectural changes and the compactness of
the timing-abstract code compared with SystemVerilog RTL.

Finally,​ ​the​ ​paper​ ​is​ ​summarized​ ​in​ ​Section​ ​VII.

II. TIMING-ABSTRACT​ ​PIPELINES

Pipelines are a fundamental part of any high-performance
digital integrated circuit design. Fig. 1 illustrates a simple
pipeline that is performing a Pythagorean theorem calculation
(c​ ​=​ ​sqrt(a​2​​ ​+​ ​b​2​)).

Fig. 1. Pipelined​ ​Pythagorean​ ​theorem​ ​calculation​ ​diagram.

Various coding styles are possible with SystemVerilog.
The SystemVerilog expression of this pipeline shown in Fig. 2
adheres to one recommended coding style in which
sequentials are kept separate from combinational logic, and
signals​ ​are​ ​named​ ​to​ ​reflect​ ​their​ ​pipeline​ ​stages.

Fig. 2. Pipelined​ ​Pythagorean​ ​theorem​ ​calculation​ ​in​ ​SystemVerilog.

This same design is coded in a timing-abstract
representation in Fig. 3, using a language extension of
SystemVerilog, called Transaction-Level Verilog, or
TL-Verilog. TL-Verilog was developed originally at Intel
Corporation, driven in large part by the author, and is now an
evolving​ ​open​ ​language​ ​standard.

Fig. 3. Pipelined​ ​Pythagorean​ ​theorem​ ​calculation​ ​in​ ​TL-Verilog​.

Several​ ​TL-Verilog​ ​constructs​ ​are​ ​introduced​ ​in​ ​Fig.​ ​3.

Pipesignals: Identifiers such as ​$aa in Fig. 3, are termed
pipesignals​. A pipesignal represent a signal and all staged
versions of that signal. The SystemVerilog code has two
signals corresponding to ​$aa_sq​, a version for stage 1 and a
version​ ​for​ ​stage​ ​2.

Pipelines: TL-Verilog introduces a scope construct for
pipelines -- ​|calc in Fig. 3. These pipelines are free-flowing
without back-pressure. They provide a mechanism for
abstracting​ ​time.

Pipestages: TL-Verilog also introduces a scope construct
for​ ​pipeline​ ​stages,​ ​or​ ​​pipestages​,​ ​within​ ​pipelines,​ ​such​ ​as​ ​​@1​.

Fig. 4 illustrates how the timing-abstract representation
differs from the RTL representation. Flip-flops are implied
where​ ​pipesignals​ ​cross​ ​pipestage​ ​boundaries.

Fig. 4. RTL​ ​versus​ ​timing-abstract​.

Strictly speaking, the timing-abstract behavioral model
does not include the pipestage specifications. These have no
impact on the overall behavior of the model. A timed signal,
such as the pipeline output ​$cc at stage ​@3​, exhibits an
identical waveform regardless of the staging of the logic that
produces it. Pipeline staging is considered to be a physical
attribute, or ​augmentation​, describing an implementation of
the behavioral model. A timing-abstract model, together with
timing​ ​augmentation​ ​is​ ​termed​ ​a​ ​​timing-augmented​​ ​model.

Logic retiming (described in [13]) at a statement level is a
simple matter of changing timing augmentation and does not
carry the risk of introducing bugs. Even if a pipesignal is

consumed in an earlier stage than it is produced, this is a
reflection of an infeasible physical implementation and does
not reflect upon the validity of the timing-abstract behavioral
model. In TL-Verilog, every logic statement belongs to a
pipeline and can therefore be retimed. (For convenience, a
default pipeline and pipestage are assumed for statements that
are​ ​not​ ​explicitly​ ​scoped.)

A few other aspects of TL-Verilog that are apparent in Fig.
3 warrant explanation. A pipesignal’s type, such as ​[31:0]​,
is included in its assignment statement; a separate type
declaration is not required. Assignment statements use Verilog
assign statement syntax, but the ​assign/always_comb
keyword is not required, and pipesignals are generally used in
place​ ​of​ ​signals.

III. PIPELINE​ ​INTERACTIONS

Expressing cycle-level detail in the source code is most
important for designs with a large number of feedback and
feed-forward paths and interactions among pipelines. Fig. 5
shows an example in the context of a CPU instruction
execution pipeline that includes such interactions. The shaded
multiplexer (mux) is selecting an operand for an arithmetic
logic unit (ALU). The four sources to the mux, ordered from
top​ ​to​ ​bottom​ ​in​ ​both​ ​Fig.​ ​5​ ​and​ ​Fig.​ ​6,​ ​are:

1. the result from the previous instruction, one stage
ahead​ ​in​ ​the​ ​instruction​ ​pipeline

2. a​ ​register​ ​value​ ​from​ ​the​ ​register​ ​file
3. an​ ​immediate​ ​value​ ​embedded​ ​in​ ​the​ ​instruction
4. a value being returned from memory, from the ​|mem

pipeline.

Fig. 5. Operand​ ​mux​ ​logic.

Fig. 6. Operand​ ​mux​ ​code.

This​ ​example​ ​introduces:

Pipeline Alignment: The ​>> (​ahead​) or ​<< (​behind​)
syntax, or ​pipeline alignment specifier, provides the stage of a

referenced pipesignal relative to the stage of the assignment
statement.

As will be discussed further, the use of relative alignments
is key to enabling safe retiming of logic where transactions do
interact. It also clarifies the nature of the interaction. Each
mux-source​ ​expression​ ​demonstrates​ ​a​ ​different​ ​alignment.

1. Source 1 (​>>1​$rslt​) is the result from the previous
instruction, which is in stage 4 of the pipeline. Since
it is consumed by the mux in stage 3, the reference to
$rslt is given an alignment of (4 - 3), or ​>>1​. ​>>1
references the transaction that is one cycle ahead in
its​ ​pipeline.

2. Source 2 (​>>2​$reg_data​) is from the register
logic in stage 5, and so has an alignment of (5 - 3), or
>>2​, suggesting that the source reflects the
transaction​ ​that​ ​is​ ​two​ ​cycles​ ​ahead.

3. Source 3 (​$imm_data​) is immediate data from the
instruction flowing through the pipeline, used by the
instruction itself. Therefore, there is no offset for this
interaction (3 - 3 = 0), and an offset specification of
zero is assumed. This can be referred to as a
naturally-aligned reference as it reflects the natural
flow of the pipeline. (All references in the
Pythagorean theorem example were
naturally-aligned.)

4. Source 4 (​/top​|mem​>>5​$mem_data​) is from a
different pipeline altogether. ​/top​|mem provides
the pipeline scope of the referenced pipesignal,
$mem_data​, and the pipestage is given by the
alignment, ​>>5​, which gives us a pipestage of 3 + 5,
or​ ​8.

To illustrate logic retiming in the face of pipeline
interactions, Fig. 6 modifies Fig. 5 to address a scenario where
a timing path into the mux exceeds the cycle time. The issue is
addressed​ ​by​ ​retiming​ ​the​ ​mux​ ​to​ ​cycle​ ​4.

Fig. 7. Operand​ ​mux​ ​moved​ ​to​ ​stage​ ​4.

The impact of this change is that each mux source is taken
from a delayed version of its prior input, and the mux output
no longer requires staging. Implementing this simple change
in RTL code is non-trivial and rather bug prone. Two
(64-bit-wide) flip-flops must be added and one removed; one
signal must be added and one removed. Signal names in the
mux expression must be change to reflect their new stage. In
TL-Verilog, however, the change is trivial. The stage scope of
the mux is simply changed from ​@3 to ​@4​, and, since the

behavioral model has not been changed, functionality is
preserved. The use of signal references with relative stage
alignments has preserved the ease of logic retiming in the face
of​ ​pipeline​ ​interactions.

IV. TIMING-PRECISION

It is not always necessary to be precise about timing in the
source code. Logic synthesis and HLS tools are quite capable
of retiming a design to optimize its implementation. Where
they can be allowed to do so, the effort of timing closure can
be significantly reduced. Reflecting a degree of reality in the
source code however does enhance a logic designer’s ability to
reason about cycle-level interactions. It also presents synthesis
tools with less work to do with each synthesis run. An
approximately-timed model can provide a good balance,
especially as it eliminates the need to break up single logic
statements​ ​that​ ​would​ ​physically​ ​span​ ​cycle​ ​boundaries.

In some cases, precise timing is called for. Some design
teams, especially those implementing very aggressive designs,
employ tools and flows that manipulate sequentials after
synthesis based on pre-synthesis knowledge of the sequentials.
These flows can include scan chain insertion and clock
network generation. When such flows are employed synthesis
cannot be permitted to retime logic. Precise timing is also
valuable for correlating the physical design back to the source
code. Timing paths, for example are reported from one
sequential element to another. Even if allowing synthesis
retiming is feasible, it can be reasonable to achieve a certain
level of timing closure without synthesis retiming and enable
it​ ​as​ ​timing​ ​targets​ ​are​ ​narrowed.

At varying levels of detail, retiming and repipelining will
continue to be a significant part of the process of targeting an
IP block to a particular implementation. Safe and easy
retiming results in fewer builds, fewer simulations, fewer
bugs, and less debug effort. Regression testing is unnecessary
if timing changes can be shown at the source-code level to
have no impact on behavior. Physical timing closure effort can
be substantially reduced if physical designers or automated
tools can be empowered to apply timing changes to the source
code​ ​with​ ​minimal​ ​or​ ​no​ ​involvement​ ​from​ ​the​ ​logic​ ​designer.

Though this paper focuses on cycle-based design, in which
all sequentials are flip-flops, phase-granular timing
augmentation is also possible. Staging can be specified on the
alternate phase of the clock, and latch-based logic can be
implied. Retiming of level-sensitive circuits is explored in
[14]. The transparency of latches avoids the need to partition
logic to precise cycle boundaries and avoids some overhead
from setup and hold time requirements. Phase-based design
generally suffers a small area penalty, more so in
field-programmable gate arrays, where latches may not be
available. Furthermore, since phase-based pipelines have
roughly double the number of sequentials to manage, design
and maintenance costs are a significant deterrent. Using
timing-augmentation, the design overhead is minimal. The
remainder of this paper, however, focuses on cycle-based
design​ ​to​ ​retain​ ​focus​ ​on​ ​the​ ​core​ ​contribution.

V. CONTROLLING​ ​THE​ ​CLOCK​ ​NETWORK​ ​AND​ ​SEQUENTIALS

When introducing abstraction, it is important to understand
the degree of control that is sacrificed. Though the
timing-augmented models are precise about the existence of
every sequential, it is up to tools to create these sequentials, as
well as their controlling inputs. While RTL code can be
explicit about reset, enable, clock, and scan inputs, these
require​ ​special​ ​consideration​ ​for​ ​timing-augmented​ ​models.

Sequentials with synchronous reset support simply include
combinational logic, such as ​AND NOT reset​. This logic
can be provided explicitly in the timing-abstract models and
synthesis tools are capable of choosing sequential logic cells
with reset inputs where appropriate. Since timing abstraction
deals only with synchronous logic, asynchronous reset
conditions are outside the scope of timing-abstract modeling.
So, no special language support is required to support reset
sequentials.

Scan logic is rarely explicit in RTL in modern
methodologies. It is generally inserted automatically.
Partial-scan methodologies might require explicit
identification of the sequentials to which to apply scan, and
regardless of whether the source code is RTL or
timing-augmented, this remains possible only if synthesis
retiming is not permitted. Scan is not an obstacle for
timing-abstraction.

Enable sequentials use their enable inputs to internally
generate conditioned versions of the clock with pulses only for
enabled cycles. Power is saved by the removal of transitions
on the clock as well as the prevention of transitions on the
outputs. An enable flip-flop has the same behavior as an
unconditioned flip-flop that has its output recirculated when
the enable condition is not asserted. As with synchronous reset
sequentials, enable sequentials can also be inferred by modern
logic synthesis tools, so again no special provision is required
(though TL-Verilog does provide an explicit construct for
recirculation).

Lastly, clock gating is similar to clock enabling, but the
conditions are applied further upstream in the clocking
network, and conditions influence multiple sequentials. Clock
gating saves more power than clock enabling by avoiding
distribution of the unneeded clock pulses. Gating conditions
must be explicit in the source code, and, depending upon the
tool flow in use, it may be necessary for the generation of
gated clock signals to be explicit to some degree as well.
Information must be exposed in timing-augmented models that
enables​ ​generation​ ​of​ ​high-quality​ ​clock-gating​ ​networks.

In TL-Verilog this need is addressed by exposing
information as to when logic expressions are computing
meaningful results. This information determines the need for
clock pulses. To illustrate this, Fig. 8 is a modification of Fig.
3. It introduces a ​when condition scope, ​?$valid​, that
applies to all the logic of the pipeline, across all stages. It
indicates that the pipeline logic is valid only when ​$valid
(whose assignment is not included in the code snippet) is
correspondingly asserted. When a pipesignal’s value is known

to be invalid, it is not necessary to propagate it through
sequentials. Thus the various staged versions of ​$valid
provide an enable or gating condition for the sequentials. It is
up to the tools processing TL-Verilog code to provide
appropriate specification of the clock gating network from this
condition information. Clock-gating logic, which is typically a
disruptive afterthought, can be in place in a design from the
start.

Fig. 8. Pythagorean​ ​theorem​ ​with​ ​validity.

When conditions are motivated not only by the need for
control over the clocking network but also from a functional
modeling perspective. Knowledge of validity enables
detection of inadvertent consumption of invalid signal values.
This can be implemented by generating assertions or by
modeling invalid states as don’t care (X) values, which will
propagate. Conveying invalidity is useful for debug activities
as well. In Fig. 7, the pipeline flow of the Pythagorean
theorem example is clear because of the X states in the
waveform, and the meaningful transactions are easily
identified.

Fig. 9. Pythagorean​ ​theorem​ ​pipeline​ ​trace.

In summary, all necessary control over sequential elements
is retained in timing-augmented TL-Verilog models. ​When
conditions are a lightweight mechanism to convey design
intent which provides clock gating or clock enabling, enables
additional​ ​checking,​ ​and​ ​simplifies​ ​debug.

VI. RESULTS

This section compares TL-Verilog models to equivalent
SystemVerilog models and characterizes code in order to
isolate the impact of timing abstraction. First a contrived
long-division example is presented and analyzed in its
completion. Analysis includes a breakdown of TL-Verilog and
generated SystemVerilog code as well as analysis of the
impact of a repipelining change. Subsequently, statistics are
shared from three industry examples that were converted by

hand from Verilog/SystemVerilog to TL-Verilog. In all cases,
Redwood EDA’s SandPiper™ code generator was used which
reads​ ​in​ ​TL-Verilog​ ​code​ ​and​ ​produces​ ​SystemVerilog​ ​code.

The long-division example in Fig. 10 computes A/B to
four fractional hexadecimal digits. A and B are each a single
hexadecimal digit, where A < B. In each of four successive
cycles, a new digit of the quotient is calculated. This
calculation is placed within a pipeline with control logic in
stage​ ​0​ ​and​ ​the​ ​calculation​ ​in​ ​stage​ ​1.

Fig. 10. Long​ ​Division​ ​TL-Verilog​ ​Code​ ​(Single-Cycle)

Fig. 11 provides a breakdown of both the TL-Verilog code
and the generated SystemVerilog code. Though the
SystemVerilog code is machine generated, industry data will
provide evidence that generated code reasonably approximates
hand-generated code, following the chosen
industry-recommended​ ​coding​ ​conventions.

Fig. 11. Divider​ ​code​ ​breakdown.

The data shows there is very little in the TL-Verilog code
beyond assignment statements. The timing abstraction
constructs for pipeline and pipestage scope account for very
little code and provide context to generate staging flip-flops

and clock gating logic. Though the SystemVerilog code is too
large to include, TABLE I. provides examples of both
TL-Verilog​ ​and​ ​SystemVerilog​ ​code​ ​in​ ​each​ ​category.

TABLE I. CODE​ ​CATEGORIES​ ​BY​ ​EXAMPLE

 TL-Verilog SystemVerilog
Clock
Gating

- clk_gate

gen_Clk_F_calc_valid_CALC

_02H(Clk_F_calc_valid_CAL

C_02H, ​ ​clk,
calc_valid_CALC_01H,

1'b1, ​ ​1'b0);
Validity ?$calc_valid `WHEN(calc_valid_CALC_01H

) ​ ​...
Code
Struct.

|calc always_comb, ​ ​begin, ​ ​end,
...

Staging @2 always_ff ​ ​@(posedge
Clk_F_calc_valid_CALC_02H

) ​ ​Result_CALC_02H[15:0]
<= ​ ​Result_CALC_01H[15:0];

Decl. - logic ​ ​[3:0] ​ ​Aa_CALC_01H;

Logic $iteration[1:

0] ​ ​=
>>1$calc_vali

d ​ ​?
(>>1$iteratio

n ​ ​+ ​ ​1) ​ ​: ​ ​0;

assign

CALC_iteration_a0[1:0] ​ ​=
CALC_calc_valid_a1 ​ ​?
(CALC_iteration_a1 ​ ​+ ​ ​1) ​ ​:
0;

The TL-Verilog code, while preserving RTL detail and
separating the concerns of timing and behavior, reduces code
size substantially. Excluding comments and whitespace, the
TL-Verilog code is smaller than the generated SystemVerilog
code by a factor of 3.4. To a close approximation, the changes
in the Declarations and Code Structure categories represent
syntactic benefits of TL-Verilog, while the other changes
reflect timing abstraction. Excluding the syntactic categories,
the estimated reduction from timing abstraction for this
example is 3.0. Research has shown a correlation, perhaps a
superlinear​ ​one,​ ​between​ ​code​ ​size​ ​and​ ​bugs​ ​[15].

Reducing IP block development time, however, is not the
primary goal of timing abstraction. The primary goal is to
increase IP reuse by simplifying and reducing bugs in the
process of optimizing IP blocks for specific implementations.
A scenario is analyzed, next, in which the long division code
is leveraged in a design that is running at a higher clock
frequency. The calculation of each iteration involves a
division, a multiplication, and a subtraction, which, in this
scenario, no longer fit within a clock period. The
multiplication and subtraction are moved to a new cycle, and
successive iterations must be two cycles apart, not one. To
maintain an average throughput of one result every four
cycles, this redesign permits the interleaving of calculations on
even and odd cycles. The resulting code is shown in Fig. 12,
with​ ​modifications​ ​highlighted.

There were two changes applied, one behavioral, and one
only impacting the implementation of the behavior. The
behavioral change was the change from a single cycle per
iteration to two cycles per iteration. In other words, the
alignment of one iteration to the next changed from one cycle

(​>>1​) to two (​>>2​). This alignment change can be seen eight
places in Fig. 12. Had the original code been designed in
anticipation of this scenario, it could have easily been
parameterized to support any alignment. The second change is
the retiming of logic within the pipeline. This change is
implemented with the addition of the ​@2 line (which could
also​ ​have​ ​been​ ​parameterized).

Fig. 12. Long​ ​Division​ ​TL-Verilog​ ​Code​​ ​(Two-Cycle)

The number of lines and the number of characters of
resulting change to the TL-Verilog and to the SystemVerilog
produced by the SandPiper code generator are provided in
Table II (excluding comments and whitespace). The
SystemVerilog code, which is now 6.4 times the size of the
TL-Verilog code, contains new flip-flops, new signal
declarations, and two new gated clocks. Also, since the
generated SystemVerilog signals reflect their pipestages,
assignment statements that have been moved to new
pipestages​ ​are​ ​impacted.

TABLE II. CODE​ ​IMPACT​ ​OF​ ​CHANGES

 TL-Verilog SystemVerilog
Lines​ ​changed/added 7 34

Chars​ ​changed/added 30 1122

It is important to evaluate real-world scenarios as well.
Fig. 13. shows code-size data from three stable, real-world
examples of Verilog or SystemVerilog modules that were
converted by hand to TL-Verilog. No data is currently
available to analyze real-world IP block modifications, but
these three examples provide meaningful code-size
comparison with real-world hand-coded modules. Note that
source lines left as Verilog or SystemVerilog were not
included in the data. Most notably, this includes module

interfaces.

Fig. 13. Real-World​ ​Designs

While significant code reduction was achieved, no detail
was lost. Logic synthesis was run for two of the designs, and
results demonstrated consistency with the original code. The
original SystemVerilog of the first two cases adhered to a
coding style similar to the generated SystemVerilog code.
Clock-gating and X injection were introduced in the first case
and improved in the second case in the process of converting.
These aspects of the generated code provide value beyond the
hand-written SystemVerilog and account for some of the code
growth between the generated and original SystemVerilog.
The third case shows less code reduction. The hand-coding
style in this case was a denser style than that of the generated
SystemVerilog. This style is common of FPGA designs and
less common among high-frequency designs. It is also typical
to see less reduction at lower clock frequencies as there are
fewer​ ​sequentials​ ​to​ ​manage.

The resulting pipelined expression of these designs
exposed some benefits. For the third case, the designer was
able to easily remove one of three stages from the main
pipeline after conversion, which was reportedly a valuable
improvement that would have been impractical to implement
in the Verilog source code. One conceptual bug was known to
be eliminated in the course of the conversions as a natural
outcome of cleaner pipeline expression, though it is unknown
whether this bug could manifest in the context of its full-chip
model.

VII. CONCLUSION

The described modeling techniques expose a
timing-abstract behavioral model that provides context for
specifying cycle-level timing as a physical implementation
detail. A pipeline construct provides the timing-abstract
context, and a pipestage construct provides timing
information. Expressions reference signals with an ​alignment
that specifies a relative pipestage offset. Expressions in
pipeline and pipestage context using relative references can be
safely retimed without impacting functionality. Sequential
elements are implied. Clock gating for these sequentials is
derived from knowledge of the ​validity of pipelined
computations. Validity information also results in cleaner
modeling,​ ​error​ ​checking,​ ​and​ ​easier​ ​debug.

The most impactful consequence of these techniques is an
improved ability to reuse IP blocks in contexts with different
timing constraints. Control-intensive designs, where the

microarchitecture is a reflection of cycle-level considerations,
call for reasonably precise modeling of timing. By isolating
timing from behavior, and by enabling tools to manage the
sequentials, microarchitectural changes motivated by
repipelining​ ​can​ ​be​ ​made​ ​with​ ​minimal​ ​effort​ ​and​ ​risk.

ACKNOWLEDGMENT

The author would like to thank the many folks at Intel
Corporation who contributed to this work and opened the
technology to the world. The author also thanks a growing
community​ ​of​ ​open-source​ ​supporters.

REFERENCES
[1] P. Gammie, “Synchronous digital circuits as functional programs,”

ACM​ ​Computing​ ​Surveys​ ​(CSUR),​ ​46(2):21,​ ​November​ ​2013.
[2] G. Berry and G. Gonthier. “The Esterel Synchronous Programming

Language: Design, Semantics, Implementation,” Science of Computer
Programming,​ ​vol.​ ​19,​ ​n°2,​ ​pp.​ ​87-152,​ ​1992.

[3] D. Brock, ed., Understanding Moore's law : four decades of innovation.
Philadelphia,​ ​Pa:​ ​Chemical​ ​Heritage​ ​Press,​ ​2006.

[4] R. Collett and D. Pyle, “What happens when chip-design complexity
outpaces development productivity?,” McKinsey on Semiconductors,
pp.​ ​24-33,​ ​Autumn​ ​2013.

[5] P. Ashenden, ed., J. Mermet, ed. and R. Seepold, ed., System-on-Chip
Methodologies & Design Languages, Springer Science & Business
Media,​ ​March​ ​2013.

[6] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel and D. Stroobandt, “An
overview of today’s high-level synthesis tools,” Design Automation for

Embedded​ ​Systems,​ ​vol.​ ​16,​ ​no.​ ​3,​ ​pp.​ ​31-51,​ ​September​ ​2012.
[7] R. Gupta, F. Brewer, “High-level synthesis: A retrospective,” High-level

Synthesis,​ ​pp​ ​13-28,​ ​Springer,​ ​2008.
[8] K. Marquet, B. Karkare and M. Moy, "A theoretical and experimental

review of SystemC front-ends", Proc. Specification & Design Languages
(FDL),​ ​pp.124​ ​-129,​ ​2010.

[9] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers and Z. Zhang,
“High-Level Synthesis for FPGAs: From Prototyping to Deployment,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and​ ​Systems​ ​archive,​ ​vol.​ ​30,​ ​iss.​ ​4,​ ​pp.​ ​473-491,​ ​April​ ​2011.

[10] D. Rosenband, J. Schwartz and Arvind, “Modular scheduling of guarded
atomic​ ​actions,”​ ​41st​ ​Design​ ​Automation​ ​Conference​ ​(DAC),​ ​2004.

[11] F. Gruian and M. Westmijze, “VHDL vs. Bluespec system verilog: a
case study on a Java embedded architecture,” Proc. of the 2008 ACM
Symposium​ ​on​ ​Applied​ ​Computing,​ ​pp.​ ​1492-1497,​ ​March​ ​2008.

[12] J.​ ​Bachrach​ ​et​ ​al,​ ​“Chisel:​ ​Constructing​ ​Hardware​ ​in​ ​a​ ​Scala
Embedded Language”, Proc. of the 49th Design Automation
Conference,​ ​June​ ​2012.

[13] C. E. Leiserson, F. Rose, and J. B. Saxe, “Optimizing synchronous
circuitry by retiming,” Proc. of the 3rd Caltech Conference on VLSI,
March​ ​1983.

[14] B. Lockyear and C. Ebeling, “Optimal Retiming of Multi-Phase,
Level-Clocked Circuits,” Advanced Research in VLSI and Parallel
Systems:​ ​Proc.​ ​of​ ​the​ ​Brown/MIT​ ​Conference,​ ​1992,​ ​pp.​ ​265-280.

[15] F. Brooks, “The Mythical Man-Month, Anniversary Edition,”
Addison-Wesley,​ ​1995.

[16] E. Nurvitadhi, “Automatic Pipeline Synthesis and Formal Verification
from Transactional Datapath Specifications” (Doctoral dissertation),
Retrieved from
https://users.ece.cmu.edu/~jhoe/distribution/2010/nurvitadhi.pdf,​ ​2010.

